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ABSTRACT
In this work we extend a previously proposed method for

functional Magnetic Resonance Imaging (fMRI) to estimate

the parameters of a linear model of Diffuse Optical Imag-

ing (DOI) time series. The regression is performed in the

wavelet domain to infer drift coefficients at different scales

and to estimate the strength of the Hemodynamic Response

Function (HRF). This multiresolution approach benefits from

the whitening property of the Discrete Wavelet Transform

(DWT), and we observe an estimation improvement which

is then related to a quantitative measure of 1/f noise. The

performances of the method are evaluated against a standard

spline-cosine GLM approach with simulated HRF and real

background physiology.

Index Terms— 1/f noise, hemodynamic response func-

tion, diffuse optical imaging, discrete wavelets.

1. INTRODUCTION

Diffuse optical imaging has emerged as a non-invasive, low-

cost method to quantify brain functional activation [1, 2]. This

relatively new technique uses near-infrared spectroscopy to

detect local changes in oxy-hemoglobin (HbO) and deoxy-

hemoglobin (HbR) concentration in biomedical tissue. Inter-

pretation of DOI data relies on a tightly coupled mechanism

where increased metabolic demand and associated hemody-

namics of cerebral tissue follows neural firing, and therefore

changes in optical signal can reflect neurophysiological ac-

tivity. The near-infrared spectral range allows in vivo tissue

imaging at depths reaching a few centimeters and with better

temporal accuracy than the Blood Oxygen Level Dependent

(BOLD) signal obtained with usual fMRI, a drawback being

a diminished spatial resolution due to diffusion.

In fMRI data analysis, linear time-invariant models have

been widely used to describe the BOLD response to stimuli

and a similar approach has been recently considered in diffuse

optical imaging [3],[4]. The currently identified sources of

the nuisance fluctuations seen in DOI include cardiac pulsa-

tion, respiration, intrinsic blood pressure variation and Mayer

waves. Moreover, it has been suggested that DOI noise ex-

hibits a 1/f -like spectral structure [2] due to either imaging

system or physiological mechanisms. In a common form, the

technique used to recover the functional response is band-

pass filtering thus attenuating the low frequency drifts and

high frequency physiology. Data is then averaged across tri-

als (block experiments). However, random-event or complex

multi-event protocols require other methods such as the Gen-

eral Linear Model (GLM) where drifts are introduced in the

model as regressors and modeled. More recently, these anal-

ysis methods have been refined in order to include the effects

of non stationary physiology on the estimators. For example,

blind principal component analysis (PCA) based filtering [5]

has been proposed to reduce physiological signal. A quasi-

stationary technique is described in Prince et al. [6] by fitting

sinusoids amplitudes and phases to model cardiac and respi-

ratory nuisance signal. This work is extended in Diamond et

al. [7] where physiological regressors, measured during the

experiment, are included in the analysis. This recent work

confirms that modeling physiology in the estimation process

can be beneficial.

The purpose of this work is to optimize a wavelet-based

estimator for activation estimation in DOI data analysis.We

compare this method with other techniques and quantify the

1/f noise as well as its effect on the underlying estimator.

2. DISCRETE WAVELET TRANSFORM AND
WHITENING PROPERTIES

Discrete wavelets are families of basis functions able to spar-

sely describe signals in the time-frequency plane. In compact

notation, the wavelet transform W at scale J maps a discrete

time signal x(n) to the vector W x given by

W x
def=

[
axJ

0 , dxJ
0 , dxJ−1

1 , . . . , dxj
0, . . . , dxj

2−jN−1,

. . . , dx1
0, . . . , dx1

2−1N−1

]T

. (1)

400978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



where the coefficients dxj
k and axj

k are the detail and ap-

proximation coefficients at scale j and position k respectively.

Time series exhibiting a long-range dependence have slowly

decaying autocorrelations and their power-law spectrum can

be generally written as S(f)|f |→0 ∼ σ2cγ/|f |γ , where cγ is a

dimensionless function of the spectral exponent γ. It has been

shown that the wavelet coefficients of a long-range 1/f pro-

cess have a correlation structure ρ whose magnitude decays

as [8] :∣∣∣ρk,k′
j,j′

∣∣∣
2jk−2j′k′→∞

∼ O
(∣∣∣2jk − 2j′k′

∣∣∣γ−1−2p
)

. (2)

Therefore, for −1 < γ < 1, the intercoefficient correlations,

both within and between scales can then be neglected for any

wavelet with sufficient number of vanishing moments (p ≥
1). However, when dealing with finite time series, increasing

the regularity of the wavelet may provoke boundary effects

and a compromise has to be negotiated in choosing a reason-

able degree. In the following, we have used a Daubechies

wavelet with four vanishing moments. Daubechies wavelets

are the most compactly supported orthogonal wavelet for any

number of vanishing moments, hence it mitigates the extent of

intercoefficient correlations introduced by periodic boundary

correction.

3. GENERAL LINEAR MODEL

Let x(t) be a signal representing the experimental paradigm

and defined as the convolution of a canonical HRF h(t) with a

protocol s(t), that is x(t) def= (h∗s)(t). The measured time se-

ries y(t) representing either oxy- or deoxy-hemoglobin con-

centration at a given source-detector pair can be modeled as

the sum of the response to the stimulus and a large-scale de-

terministic drift θ

y(t) = βx(t) + θ(t) + ν(t), (3)

where β is a scalar representing the strength of the hemody-

namic response. The noise model is assumed to be a serially-

correlated error ν. The discrete wavelet transform W is then

applied on both sides of (3) to give

W y = β W x + W θ + W ν, (4)

where W x is assumed to be known. The complexity of the

drift can be limited by assuming that fine scale coefficients

dθj
k, 1 ≤ j ≤ J0 − 1 are zero, so that θ only describes phys-

iological low-frequency components with dθj
k, J0 ≤ j ≤ J .

Let n0 = 2−J0+1N be the number of coefficients represent-

ing θ. The scale J0 solely characterizes the complexity of

the drift, which is described by a combination of large scale

wavelets with the scaling function

θ(t) = aθJ
0 ϕJ

0 (t) +
J∑

j=J0

2−jN−1∑
k=0

dθj
k ψj

k(t). (5)

Following [3], equation (4) can be written as a standard re-

gression model :

W y = Aξ + W ν, (6)

where the vector of unknown parameters ξ is defined by

ξ
def=

[
aθJ

0 , dθJ
0 , . . . , dθJ0

2−J0N−1
, β

]
(7)

with the N × (n0 + 1) matrix A . The maximum likelihood

(ML) estimate of ξ is given by

ξ̂ML =
(
AT Σ−1A

)−1
AT Σ−1 W y, (8)

where Σ is the covariance matrix of the noise. The ML esti-

mators provide an alternative approach to estimation of long-

memory errors and have been developed in the wavelet do-

main by several authors (see [9] for review). The algorithm

for the combined ML estimation of both matrix Σ and the

linear model parameter vector ξ by mean of the spectral ex-

ponent γ is discussed below.

3.1. Model Selection

The parameters selection method presented here provides an

additional way of improving the efficiency of the estimator as

compared to [3]. We first note that the drift θ is not orthogo-

nal to the estimated response, hence the overlap between the

subspaces can deteriorate the performance. One method for

studying this intersection of functional spaces is to compute

the correlation coefficients between the drift functions and the

stimulus function x(t). A proposed filtering method to con-

trol the degeneracy is to remove the drift functions that have

a strong correlation with the stimulus [4]. Once a correlation

threshold value has been chosen, the columns of the design

matrix A corresponding to L wavelet atoms to discard from

the drift are removed, giving the reduced matrix B of size

N × (n0 + 1 − L). The vector ξ̂′ of length (n0 + 1 − L) is

obtained by substituting matrix B in (8) such that

ξ̂′ =
(
BT Σ−1B

)−1
BT Σ−1 W y. (9)

The estimate ξ̂ is then recovered by zero-padding at all in-

dexes where the drift is assumed to be zero.

The selection of the scale J0 that characterizes the number

of degrees of freedom of the drift also has a profound effect on

estimation of β. In this work, we select the values of J0 and

the correlation threshold that minimize the empirical estimate

of the mean squared error for β̂, based on several simulations

of the null hypothesis (rest) condition (see section 4.1).

In the wavelet domain, it is assumed that the error terms

are not correlated across time because the wavelet coefficients

of a 1/f process at scale j are a set of stationary independent

identically distributed variables with zero mean and Sdj
vari-

ance [8]. The matrix Σ is thus approximately diagonalized by
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the DWT and takes the form

Σ = diag {SaJ
, SdJ

, . . . , (Sd2 , . . . , Sd2), (Sd1 , . . . , Sd1)} ,
(10)

where SaJ
and Sdj , j ∈ [1, 2, . . . , J ], are the variances of the

approximation and wavelet coefficients. A preliminary hy-

pothesis would be to assume that the variances of the noise at

different scales are equal. Thus, the error covariance matrix is

the identity matrix and this first estimation scheme is an ordi-

nary least squares (OLS) analysis. However, the variances of

the noise at different scales may be quite different. We used

the wavelet-generalized least squares (WLS) algorithm devel-

oped in [10] to approximate the maximum likelihood estima-

tor of both model and noise parameters in an iterative fash-

ion. Typically the algorithm requires three iterations or less

until the change in successive parameter estimates is less than

0.1%.

4. EXPERIMENTS

All DOI data collected from a CW NIR commercial system

(Techen CW5) are preprocessed to obtain a concentration mea-

sure from raw photon fluence signals. The optical probes

(laser sources and detectors) are positioned on the scalp of the

subjects and closest source-detector (optode) pairs are kept

for analysis. The photon fluence Φ at wavelength λi = 690,

830 nm is then converted to a variation in optical density ΔOD
through the Beer-Lambert law

ΔOD(t, λi) = − ln
(

Φ(t, λi)
Φ0(t, λi)

)
. (11)

The next step is to translate the ΔOD measures to concen-

tration changes by using the extinction coefficients ε of both

chromophores :

[
ΔCHbO(t)
ΔCHbR(t)

]
∝

[
ελ1

HbO ελ1
HbR

ελ2
HbO ελ2

HbR

]−1 [
ΔOD(t, λ1)
ΔOD(t, λ2)

]
.

(12)

Each change in concentration is computed for selected optode

pairs and are modeled in the definition of the general linear

model in the previous section.

4.1. Simulated evoked response

In this section, we present the results of simulation studies

used to validate wavelet-based estimation by comparison to a

GLM approach that modeled the instrument and physiologi-

cal drifts as a sum of polynomial and sine functions. Realistic

simulations are performed by adding optical data measured

at rest to a deterministic evoked response of fixed strength β.

Baseline DOI data were collected over the motor area of two

subjects. Data from 14 source-detector pairs were included

in the analysis. For each channel, we computed the esti-

mate ξ̂ with 10 distinct random stimuli using three estimation
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x 10−12

J
0

Correlation threshold

Fig. 1. Mean squared error as a function of the drift finest

scale J0 and the correlation threshold. Note that minimum

error is attained for J0 = 10. The gray scale is arbitrary.

schemes : spline/cosine GLM, OLS and WLS. The stimulus

paradigm followed an event-related design with a uniformly

distributed 4 to 20 seconds interstimulus interval over the 6.8

minute runs. Each stimulus time series was composed of al-

ternating segments of 1 and 0. Each segment of 1 lasted for

2 seconds. We used the model of canonical HRF provided by

the SPM package with small values βHbO = 1 × 10−6 and

βHbR = −2 × 10−7.

The scale J0 and the correlation threshold above which

drift basis functions are discarded were varied in the case of

OLS and WLS to investigate their impact on the performance

of those estimators. Efficiency was first quantified using the

mean squared error between simulated and estimated value of

β. Fig. 1 shows this error for ΔCHbO of one subject as a func-

tion of the drift complexity J0 and the correlation threshold

in the region of minimal error. The efficiency of the method

varies greatly depending on the number of degrees of free-

dom n0 = 2−J0+1N of the baseline drift, and to a lesser

extent to the correlation threshold. In the case of ΔCHbO, the

minimum of the criterion is reached for J0 = 10 and a cor-

relation value of 0.25. Similar values were obtained for the

deoxy-hemoglobin concentration measurements. The over-

all performance of all three methods, the general linear model

with periodic drifts (COS), Ordinary Least Square (OLS), and

Wavelet Least Square (WLS), can be compared in terms of

efficiency of estimation of the parameter β. These results are

shown in Fig. 2, which shows the mean error and the error

standard deviation. It can be seen that WLS is more efficient

than the spline/cosine GLM approach in the case of ΔCHbO,

but that all methods are comparable for ΔCHbR. The data sug-

gest a different correlation structure between HbO and HbR.

In order to validate this, we estimated the average spectral ex-

ponent, γ, describing the long memory noise for each signal

in Table 1.

The much greater spectral exponent for HbO is likely to
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Table 1. Mean and standard deviation of the spectral expo-

nent γ for HbO and HbR
HbO HbR

Mean 0.550 0.169

Standard deviation 0.206 0.185

COS OLS WLS
−3

−2

−1

0

1

2

3
x 10−6

HbO
HbR

Fig. 2. Standard deviations and biases computed for three

models of linear regression : spline/cosine GLM, OLS and

WLS. Left : HbO concentration. Right : HbR concentration.

Note how the weighted estimation reduces the standard devi-

ation (at the expense of a slightly increased empirical bias il-

lustrating the trade-off between modeling and estimation con-

fidence).

benefit from the whitening effect of the DWT, as opposed to

the HbR case where the null value is contained in the standard

deviation range of the γ estimate. These empirical findings

stand in favor of the presented method as a more efficient es-

timator for DOI data contamined with 1/f noise. The above

technique was also evaluated on an event related finger tap ex-

periment with two subjects. Activation was clearly localized

over the motor area and results were consistent [11]. Only the

above simulations however provide a truth basis to evaluate

the technique.

5. CONCLUSION

This work has addressed the problems of characterizing the

1/f noise and estimating the strength of hemodynamic re-

sponse in diffuse optical imaging. Physiological drift were in-

cluded as part of our model which is distinct from the previous

WLS estimator and from a recent work based on continuous

wavelet technique [12]. Analysis performed on experimental

DOI data provided us with a quantitative measure of the 1/f
noise for HbO and HbR concentration measurements. These

results reflect the observations made on the performance of

WLS as compared to another GLM-based estimator.
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